نگاشت های تقریباً ضربی و نگاشت های حافظ شبه طیف و طیف شرطی
thesis
- وزارت علوم، تحقیقات و فناوری - دانشگاه تربیت مدرس - دانشکده ریاضی
- author معصومه آقازاده
- adviser فرشته سعدی
- publication year 1394
abstract
: در این پایان نامه ویژگی های شبه طیف و طیف شرطی اعضای یک جبر باناخ مختلط بحث شده و چند نتیجه در مورد نگاشت های خطی حافظ شبه طیف و طیف شرطی ثابت می شود. در یک قسمت از پایان نامه نیز بحث مختصری درباره ی?- آشفتگی ها و ارتباط بین طیف شرطی در جبر باناخ اولیه و ?- آشفتگی آن ارائه می شود.
similar resources
نگاشت های خطی حافظ شبه طیف و طیف شرطی
در این پایان نامه نگاشت های خطی حافظ ?- شبه طیف و ?- طیف شرطی بین جبرهای باناخ یکدار رامورد مطالعه قرار می دهیم. یکی از نتایج جالبی که به آن می رسیم حافظ طیف بودن نگاشت های حافظ ?- شبه طیف است که در بسیاری از حالات این نگاشت یک یکریختی یکمتر می شود. ابتدا نگاشت های ?-شبه طیف، ?- طیف شرطی، ?- تقریبا ضربی را تعریف می کنیم سپس روابط بین شبه طیف و طیف شرطی یک عضو از جبر باناخ مختلط یکدار را بررسی ...
15 صفحه اولنگاشت های تقریبا ضربی حافظ طیف روی جبرهای باناخ
در این پایان نامه مفهوم تقریبا ضربی بودن نگاشت و پیوستگی خودکار درحالتی که تقریبا ضربی است را بررسی می کنیم. همچنین چند نسخه تقریبی از قضیه ی گلیسون -کاهان -زلازکو و نگاشت های تقریبا ضربی که نزدیک ضربی هستند را بیان و مطالعه می کنیم. همچنین به بررسی جبرهایی می پردازیم که دارای این ویژگی هستند که $amnm$-جبر نامیده می شوند.در این پایان نامه بعضی از ویژگی های شبه طیف،$amnm$-جفت، ...
نگاشت های حافظ طیف و نگاشت های ضربی- بردی بین جبرهای یکنواخت
فرض کنیم x یک فضای فشرده ی هاوسدورف و a یک جبر یکنواخت طبیعی بر x باشد. فرض کنی?_a (f)م طیف f?a باشد. یکی از اهداف ما تعمیم قضیه ی مولنار به صورت زیر است: فرض کنیم ?:a?a نگاشتی پویا باشد که در شرط زیر صدق کند: ?(fg)=?(?(f)?(g) ) (?f,g?a) در این صورت یک همسانریختی a:x?x وجود دارد به طوری که ?(f)(?(x) )=(?(1_x ) )(x)f(x) (? f?a,? x?x) هدف دیگر ما تعمیم قضیهی مولنار و تعمیم قضیه ی رائو و روی ...
نگاشت های تقریباً حافظ طیف
فرض کنیم x و y فضاهای باناخ ابربازتابی و (b(x و (b(y به ترتیب جبرهای باناخ عملگرهای خطی و کراندار روی x و y باشند. اگر (p? b(x) -> b(y یک نگاشت خطی و دوسویی تقریباً حافظ طیف باشد، در این صورت p یک عملگر تقریباً ضربی یا یک عملگر تقریباً پادضربی است. علاوه براین، اگر y = x یک فضای هیلبرت تفکیک پذیر باشد، چنین نگاشتی اختلال کوچکی از یک خودریختی یا یک پادخودریختی خواهد شد. همچنین، پیوستگی خودکار چنین ...
یادداشتی بر نگاشت های جمعی حافظ طیف روی c*- جبرها
متیو و رادی [14] ثابت کردهاند که اگر ایزومتری طیفی یکانی از c*- جبر یکدار a به روی c*- جبر یکدارb از نوع i با فضای ایدهآل هاسدورف و کلاً ناهمبند باشد، آنگاه جردن ایزومورفیزم است. در این یادداشت نشان میدهیم که اگر یک نگاشت جمعی پوشا و حافظ طیف باشد، آنگاه جردن ایزومورفیزم است بدون فرض اینکه کلاً ناهمبند باشد.
full textنگاشت های خطی نگهدارنده طیف
در این مقاله نشان می دهیم که اگر a جبر باناخ یکدار و b یک $c^*$-جبر نامتناهی محض و دارای ایده آل ماکسیمال جابه جایی ناصفر و ρ:a→b نگاشت خطی پوشا یکدار و نگهدارنده طیف باشد آنگاه ρ همریختی جردن است
full textMy Resources
document type: thesis
وزارت علوم، تحقیقات و فناوری - دانشگاه تربیت مدرس - دانشکده ریاضی
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023